ÇÖZÜNENİN UÇUCU OLMADIĞI ÇÖZELTİLERDE BUHAR BASINCI DÜŞMESİ
Çözünenin oldukça az olduğu seyreltik çözeltiler RAOULT yasasına uyarlar.Benzer şekilde uçucu olmayan katıların çözünmesiyle elde edilen seyreltik çözeltiler de RAOULT yasasına uyarlar.Çözünenin buhar basıncı hemen hemen sıfıra yakın olduğundan, çözeltinin p toplam buhar basıncı yalnızca çözücünün p1 kısmi buhar basıncına eşit olur.Bu yüzden de çözeltinin buhar basıncı saf çözücünün buhar basıncına göre daha düşük olur.Şekil 10.10.1’de, sırayla barometre (a), barometre boşluğuna konulan çok az miktarda saf çözücü olarak su (b) ve yine barometre boşluğuna konulan aynı miktardaki sakkaroz çözeltisi (c) görülmektedir.Barometrelerden okunan basınçlar sırayla (a) h1 mmHg ,(b) h2 mmHg ve (c) h3 mmHg olmaktadır.Buna göre h1>h2>h3 eşitsizliği görülmektedir.Kısaca barometre boşluğuna konulan saf çözücünün basıncı daha fazla olduğundan aynı boşluğa aynı miktarda konulan çözeltiye göre barometredeki civa yüksekliğini daha çok düşürür.Saf çözücü ile çözeltideki moleküllerin görünüşü şekil 10.10.2’de verilmiştir.
Çözücüyü 1, çözüneni de 2 ile indislediğimizde çözeltinin p toplam buhar basıncı, yalnızca çözelti üzerinde saf çözücünün p1 kısmi buhar basıncına eşit olacağından;
p=p1 =p01 x1 =p1 (1-x2) (10.10.1)
x2 =(p01- p1) /p01 =Δp/ p01 (10.10.2)
bağıntıları yazılabilir.Öyleyse, uçucu olmayan bir çözünen ile hazırlanan çözeltideki, Δp basınç düşmesinin saf haldeki çözücünün p01 buhar basıncına oranlanmasıyla tanımlanan, Δp/p01 bağıl buhar basıncı düşmesi çözünenin x2 mol kesrine eşittir.Bu tanım, RAOULT yasasının bir başka söylenişidir.
Saf çözücü ile çözelti arasındaki Δp/p01 bağıl basınç düşmesi ölçülerek, çözücünün M1 mol kütlesi ve g1 kütlesi bilindiğinden;
(g2/ M2)/{(g1/M1)+(g2/M2)}=Δp/p01 (10.10.3)
bağıntısından çözünenin M2 mol kütlesi belirlenebilir.Bu yola RAOULT yasası ile mol kütlesi belirlenmesi yöntemi denir.
Çözünen partiküllerin derişimine fakat doğasına bağlı olmayan çözelti özelliklerine koligatif özellikler adı verilir.Koligatif özellikler, yalnızca çözeltide bulunan ayrı ayrı taneciklerin derişimine bağlı olup; taneciklerin molekül, anyon veya katyon gibi farklı olan doğasından bağımsızdırlar.Örneğin 1 molal sakkaroz çözeltisi ile 1 molal üre çözeltisinin çözücü aynı olmak koşuluyla kaynama noktası yükselmeleri ve donma noktası düşmeleri aynı olduğu halde, 1 molal NaCl çözeltisinde bu değerler diğerlerinin 2 katıdır.Çünkü, NaCl çözeltisinin 1 molu içerisinde 1 mol Na ve 1 mol Cl iyonu olmak üzere toplam 2 mol tanecik vardır.Yalnızca tanecik sayısına bağlı olan koligatif özellikler için 1 m NaCl çözeltisi 2 m sakkaroz veya 2 m üre çözeltisinin etkisini gösterir.Eğer 1 m CaCl2, 1 m FeCl3 ve 1 m Al3(SO4)3 çözeltilerini göz önüne alırsak,1 m üre ve sakkaroz gibi moleküler çözeltilerin göstermiş olduğu koligatif özelliklerin sırayla 3,4 ve 5 katını gösterirler.Üre ve sakkaroz moleküler olarak çözündüğünden 1 molu çözeltiye daima 6.02 x 1023 tanecik verir.Oysa 1 mol NaCl çözeltiye 2 x 6.02 x 1023 tanecik verir.
BUHAR BASINCI DÜŞMESİNİN YOL AÇTIĞI DİĞER OLAYLAR:ÇÖZELTİLERİN KAYNAMA ve DONMA NOKTALARI
Uçucu olmayan çözünen ile hazırlanan bir çözeltinin buhar basıncının saf çözücünün buhar basıncına göre düşük olması; çözeltinin kaynama noktasının yükselmesine, donma noktası düşmesine ve ozmoz olayına yol açar.Uçucu olmayan çözünenden dolayı çözeltinin saf çözücüye göre buhar basıncı düşmesini ölçmek oldukça güçtür.Buna rağmen, çözeltinin saf çözücüye göre kaynama noktasının yükselmesi, donma noktası düşmesi ve çözeltinin ozmatik basıncı büyük bir duyarlılıkla ölçülür.
Buhar basıncı, üzerindeki atm.basıncına eşit olana dek ısıtılan bir sıvı kaynamaya başlar.1 atm. basınç altındaki kaynama sıcaklığına normal kaynama sıcaklığı denir.Uçucu olmayan bileşen çözeltinin buhar basıncını düşürdüğünden çözelti saf çözücünün standart kaynama sıcaklığına gelindiğinde henüz kaynamaz.Çözeltinin buhar basıncını 1 atm.’ye çıkararak kaynatmak için sıcaklığını daha da yükseltmek gerekir.Böylece, uçucu olmayan çözünen içeren çözeltinin kaynama sıcaklığı saf çözücünün kaynama sıcaklığından daha yüksek olur.Bu kaynama noktası yükselmesi çözeltinin derişimi ile doğru orantılı olarak artar.Bu kural yalnızca seyreltik ve ideal çözeltiler için geçerlidir.
Isıtılan saf çözücü içinde şekil 10.10.2’den görüldüğü gibi buhar fazına geçmesi olası çözücü moleküllerinin sayısı, çözeltideki çözücü molekülleri sayısına göre daha fazladır.Bundan dolayı sıcaklık yükseldikçe saf çözücünün buhar basıncı, çözeltinin buhar basıncına göre atm. basıncına daha düşük sıcaklıkta ulaşır ve kaynamaya başlar.Çözeltinin kaynaması için sıcaklığı yükseltilerek basıncının atm. basıncına eşit olması sağlanır.Çözücü ve çözeltinin buharlaşması şematik olarak şekil 10.11.1’de görülmektedir
Saf çözücü ve çözeltinin donması şekil 10.11.2’de şematik olarak verilmektedir.Saf çözücü molekülleri katı fazı oluşturmak üzere, çözeltideki çözücü moleküllerine göre daha kolay istiflenecek, daha yüksek sıcaklıkta donacaktır.Uçucu olmayan çözünen molekülleri çözücünün saf katısını oluşturmasını bir ölçüde engellediklerinden, donmanın olabilmesi için çözeltinin daha çok soğutulması gerekmektedir.Böylece donma noktası düşecektir.
Bu olgu saf çözücü ve çözelti için çizilen buhar basıncı eğrileri yardımıyla şekil 10.11.3’te gösterilmiştir.Uçucu olmayan çözünenin derişimine bağlı olarak, çözeltinin buhar basıncı saf çözücünün buhar basıncının altından gider.Kaynama noktası yükselmesi bu iki eğri arasındaki ΔTk yer değiştirmesine eşit olup, verilen bir çözücü için aynı tanecik derişimindeki tüm çözeltiler için aynıdır.
Kaynama noktası yükselmesine ilişkin sorunlarda derişim için mol kesrinden çok molalite kullanılır.Örneğin m sulu çözeltisinin kaynama noktası suyun kaynama noktasından 0.5120 C daha yüksektir.Bir molal çözeltinin kaynama noktası yükselmesine alınan çözücü için Kk molal kaynama noktası yükselmesi sabiti (ebüliyoskopi sabiti) denir.Bu sabitler farklı çözücüler için çizelge 10.11.1’de verilmiştir.Derişimi 0.5 molal olan bir çözeltinin kaynama noktası yükselmesi, molal sabitin yarısına eşittir.Öyleyse bir çözeltinin ΔTk kaynama noktası yükselmesi Kk sabiti ile çözünenin m2 molalitesinin çarpımına eşit olarak ΔTk =Kk m2 (10.11.1)
Bağıntısıyla verilir.Gerçekte bu yaklaşık bir bağıntıdır.Molalite ile mol kesri arasında; mol kesri ifadesinin paydasında çözünenin mol sayısını çözücünün mol sayısı yanında seyreltik çözeltiler için ihmal ederek bulunan x2=n2/n1=(g2/M2)/(g1/M1) bağıntısının, m2=(g2/M2)(1000/g1) molalite bağıntısına oranlanmasıyla,
m2(1000/M1)x2 (10.11.2)
eşitliği elde edilir.Buna göre molalite mol kesriyle doğru orantılı olarak değişmektedir.
1 atm. basınç altında maddelerin katı-sıvı dinamik denge sıcaklığına normal donma noktası veya normal erime noktası adı verilir.Çözeltinin donma sıcaklığı saf çözücünün donma sıcaklığına göre daha düşüktür.Çözücü aynı kalmak koşuluyla molalitesi aynı olan tüm moleküler çözünen madde çözeltilerinin ΔTd donma noktası düşmeleri birbirine eşittir.1 molal çözeltinin donma noktası düşmesine alınan çözücü için, Kd molal donma noktası düşmesi sabiti (kriyoskopi sabiti), denir.Bu sabitler farklı çözücüler için çizelge 10.11.1’de verilmiştir.Kd sabiti ile çözünenin m2 molalitesinin çarpımına eşit olarak ΔTd donma noktası düşmesi
ΔTd=Kd m2 (10.11.3) bağıntısı ile verilir.Öyleyse, donma noktası düşmesi molalite ile doğru orantılı olarak yalnızca seyreltik ve ideal çözeltiler için geçerlidir.Çözünen ile çözücünün katı çözelti verdiği sistemler için bu bağıntı geçerli değildir.Bu bağıntıdaki m2 yerine (10.11.2)den x2 mol kesrine bağlı olan ifade yazılarak da ΔTd donma noktası düşmesi hesaplanabilir.
Çizelge 10.11.1
Molal Kaynama Noktası Yükselmesi ve Donma Noktası Düşmesi Sabitleri
Çözücü | Kaynama Noktası | Kk/K mol- | Donma Noktası/0C | Kd/K mol- |
Asetik Asit | 118.1 | 3.07 | 16.5 | -3.90 |
Benzen | 80.1 | 2.53 | 5.5 | -5.12 |
Kafur | - | - | 179.0 | -39.7 |
CCl4 | 76.8 | 5.02 | -22.8 | -29.8 |
Kloroform | 61.2 | 3.63 | -63.5 | -4.68 |
Etil Alkol | 78.4 | 1.22 | -114.6 | -1.99 |
Naftalin | - | - | 80.2 | -6.80 |
Su | 100.0 | 0.512 | 0.0 | -1.86 |
Kaynama noktası yükselmesi ölçülerek mol kütlesi belirlenmesi yöntemine ebüliyoskopi, donma noktası düşmesi ölçülerek mol kütlesi belirlenmesi yöntemine ise kriyoskopi denir.Bu yüzden yukarıda belirttiğim gibi Kk ve Kd sabitleri sırayla ebüliyoskopi ve kriyoskopi sabiti olarak da anılırlar.ΔTk ve ΔTd molaliteyle doğru orantılı olduğundan ve Kk ve Kd sabitleri de kullanılan çözücüler için belli olduğundan, m2 =(g2/M2)(1000/g1) bağıntısındaki g2 ve g1 tartılarak çözünenin M2 mol kütlesi hesaplanır.
Suyun atm. basıncı altındaki katı-sıvı dengesi olan donma noktasının kendi buhar basıncı altındaki katı-sıvı buhar dengesi olan üçlü noktadan 0.010 C düşük olmasının 0.0750 C suda çözünen alanın kriyoskopik etkisinden kaynaklanır.Geriye kalan 0.025 ise sıvılar kesiminde de değindiğimiz gibi sıvı-katı denge sıcaklığı üzerine 1 atm’lik basıncın etkisinden kaynaklanmaktadır.
Hiç yorum yok:
Yorum Gönder