PRİZMALAR, PRİZMA ÇEŞİTLERİ, PRİZMALARIN ÖZELLİKLERİ İLE İLGİLİ KONU ANLATIMLAR
DİK PRİZMALARIN ALAN ve HACİMLERİ
Prizmalarda yan yüzeyleri birleştiren ayrıtlara yanal ayrıt denir.
[AA'], [BB'], [CC'], [DD']
yanal ayrıtlardır.
Dik prizmalarda yanal ayrıt cismin yüksekliğine eşittir.
Cismin yüksekliğine h dersek
h = |AA'| = |BB'| = |CC'| = |DD'| olur.
Prizmanın Hacmi
Bütün Alan ise yanal alan ile iki taban alanının toplamıdır.
1. Dikdörtgenler Prizması
Dikdörtgenler prizması yan yüzeyleri karşılıklı ikişer ikişer eş olan altı adet dikdörtgenden oluşan prizmadır. Burada hacim, taban alanı olan (a.b) ile yükseklik olan (c) nin çarpımıdır. Alan ise (a.b), (b.c) ve (a.c) yüzey alanlarının ikişer katlarının toplamıdır. Dikdörtgenler prizmasında birbirine en uzak iki köşeyi birleştiren doğru parçasına cisim köşegenidenir.
Cisim köşegeni daima prizmanın içinden geçer. Yüzeylerinden geçmez. Sadece bir yüzeyden geçen köşegene o yüze ait yüzey köşegeni denir. Burada köşegenlerin uzunlukları
|AC'| = |A'C| = |BD'| = |B'D| = e (cisim köşegeni)
|BD| = f (Yüzey köşegeni) olsun. Bu durumda:
2. Kare Prizma
3. Küp
Yüzey köşegeni: f = Aö²
Cisim köşegeni: e = aÖ
4. Üçgen Prizmalar
Üçgen prizmalar tabanını oluşturan üçgene göre isimlenir.
a. Eşkenar Üçgen Prizma
Buradan tüm alanı:
b. Dik Üçgen Prizma
Taban çevresi a + b + c olduğundan,
Yanal alan = (a + b + c) . h
Tüm Alan = b . c + (a + b + c) . h
5. Silindir
Taban alanı= pr²
Bir dikdörtgen levha bir kenarı etrafında döndürüldüğünde silindir elde edilir. |
6. Düzgün Çokgen Prizmalar
Tabanı düzgün çokgenlerden oluşan prizmalara düzgün çokgen prizmalar deriz. Taban ayrıtları birbirine eşittir. Diğer dik prizmalarda olduğu gibi düzgün çokgen prizmalarda da yanal ayrıt aynı zamanda yüksekliktir.
Dik prizmalarda taban şekli ne olursa olsun, hacmin taban alanı ile yüksekliğin çarpımı ve yanal alanın ise taban çevresi ile yüksekliğin çarpımı olduğunu unutmayalım.
Eğik Kare Prizma
Tabanı, bir kenarı a olan kareden oluşan prizma bir yöne doğru taban düzlemi ile a açısı yapacak kadar eğilirse eğik kare prizma elde edilir.
Prizmanın yanal ayrıtlarına l dersek,
Prizmanın yüksekliği h =l .sin a olur.
Eğik prizmanın yanal ayrıtlarına dik olacak şekilde oluşan kesitine dik kesit denir. Eğik kare prizmanın iki yan yüzeyi dikdörtgen, diğer iki yan yüzeyi ise paralelkenardır.
Eğik kare prizmanın dik kesitinin bir kenarı taban kenarı a kadar, diğeri ise:
Alt ve üst tabanlar ilave edildiğinde tüm alan bulunmuş olur. Bütün prizmalarda olduğu gibi eğik prizmalarda da hacim, taban alanı ile yüksekliğin çarpımı ile bulunur.
1 yorum:
çk güzel elinize sağlık
Yorum Gönder